M2F3D: Mask2Former for 3D Instance Segmentation

Jonas Schult! Alexander Hermans' Francis Engelmann? Siyu Tang® Otmar Hilliges® Bastian Leibe!

'RWTH Aachen University

Abstract

In this work, we show that the top performing
Mask2Former approach for image-based segmentation
tasks works surprisingly well when adapted to the 3D scene
understanding domain. Current 3D semantic instance seg-
mentation methods rely largely on predicting centers fol-
lowed by clustering approaches and little progress has
been made in applying transformer-based approaches to
this task. We show that with small modifications to the
Mask2Former approach for 2D, we can create a 3D in-
stance segmentation approach, without the need for highly
3D specific components or carefully hand-engineered hy-
perparameters. Initial experiments with our M2F3D model
on the ScanNet benchmark are very promising and sets a
new state-of-the-art on ScanNet test (+ 0.4 mAPsg).

1. Introduction

For image-based tasks, CNN architectures [9, 10,28,29]
have dominated for a long time. However, recently, we
observe a strong shift towards transformer-based models
[3,5,20]. We now even see universal architectures such
as Mask2Former (M2F) [3] that can directly be applied
to a whole range of different segmentation tasks, achiev-
ing state-of-the-art results. This move towards transformer-
based models is less pronounced for tasks performed on
3D point clouds. Most current transformer-based meth-
ods focus on either 3D object detection [21,23] or seman-
tic segmentation [16,26]. Often very specific modifica-
tions need to be made to deploy attention modules at low
computational cost due to the quadratic memory complex-
ity of the attention matrix. Here, we investigate whether
the Mask2Former meta architecture can also generalize to
3D segmentation tasks. In particular, we focus on instance
segmentation of 3D indoor scans which has not yet been
explored by transformer-based methods. In contrast to con-
current 3D transformer-based methods, we mitigate the lim-
iting factor of attention complexity by cross-attending a
fixed number of instance queries with point cloud features.
In contrast to most approaches for 3D instance segmenta-
tion [2,6,13,27,32], we do not rely on any center voting,

2ETH AI Center

SETH Zurich

heuristic grouping mechanism, or non-maximum suppres-
sion step, making the architecture agnostic to domain spe-
cific and carefully hand-engineered hyperparameters. We
show that with a few modifications, a Mask2Former can in-
deed be applied to the task of instance segmentation on 3D
point clouds. We use a sparse convolutional backbone to ex-
tract features from a point cloud, we introduce a loss defined
over point cloud segments to improve the memory con-
sumption during training, and carefully ablate a set of de-
sign decisions such as the use of nonparametric queries pro-
posed by 3DETR [23]. Using the resulting setup, M2F3D
achieves state-of-the-art results for 3D instance segmenta-
tion on the ScanNet v2 benchmark, even surpassing archi-
tectures that are highly tuned for 3D point cloud processing.

2. Method

Our proposed model for 3D segmentation tasks con-
sists of three components and draws inspiration from the
Mask2Former architecture [3]. () A feature backbone net-
work (consisting of an encoder and a decoder) that extracts
multi-scale point features from the input point cloud. @) A
query refinement step, which takes as input a set of object
queries and multi-scale point features and then iteratively
lets the queries cross-attend to the input features in order
to refine their representation of objects in the scene. And fi-
nally, 3 the mask prediction, which creates a full resolution
mask and predicts a class for each query. Figure | visual-
izes these three components. In the following sections, we
present these components individually and highlight impor-
tant design decisions which are key for 3D point clouds.

(D Feature Backbone. The backbone provides higher
level pointwise features. We use a sparse convolutional
backbone based on the MinkowskiEngine [4] as it consti-
tutes a good trade-off between accuracy and efficiency. We
extract features using a sparse U-Net, consisting of a sym-
metric convolutional encoder and decoder with skip connec-
tions between them. We build a multi-scale representation
using the coarsest 4 feature maps of the decoder and use the
full resolution feature map for predicting instance masks.

Feature Backbone

Query Refinement

Mask Prediction

’ Masked Decoder Layer } I g Ma,,sk_
L7 T ¥ Class
’ Masked Decoder Layer } [X Mask
v T t Clzliss
’ Masked Decoder Layer } [0% Mask
7 v T [} Clzliss
l]_,[}__J ’ Masked Decoder Layer]——l—‘®——>{ Mask
E v «3 Class

00000 NSk
Class

Figure 1. Mask2Former3D Architecture. We adopt the same meta architecture as Mask2Former [3] which can be roughly divided into
three main components. (I) (Feature Backbone) We extract multi-scale features from the input point cloud,) (Query Refinement) we
update query features by cross attending to multi-scale point cloud features and @) (Mask Prediction) for each query, we obtain a full

resolution instance mask and class prediction.

@ Query Refinement. We aggregate information from
our multi-scale representation to iteratively refine a set of
queries to describe objects in the scene. We adopt the same
transformer decoder variant as in Mask2Former [3], i.e. ap-
plying cross attention from queries to point cloud features,
followed by self-attention between queries. This removes
the quadratic complexity requirements introduced by the at-
tention matrix between point cloud features. Within each
decoder block, query features are updated in a coarse-to-
fine fashion starting with the coarsest point cloud features.

In contrast to the 2D domain, 3D point clouds have a
variable number of points, i.e. they are not organized in a
dense grid of predefined size. As we cannot batch point
clouds of variable sizes, leveraging a standard transformer is
non-trivial. We pad point clouds to fit the size of the largest
entry in the batch and mask out attention where needed. In
case the point cloud size exceeds a certain threshold, we
resort to sampling point features to keep the memory re-
quirements in bounds.

Inspired by 3DETR [23], we leverage nonparametric
queries to obtain point cloud specific initial object queries.
The object queries are split into two parts. The query fea-
tures, from which the query vectors are computed and the
query positions, from which we compute positional embed-
dings. In the nonparametric query setting, we sample a set
of points via furthest point sampling (FPS), and use their lo-
cation to compute the positional embeddings for the queries,
while we set the actual query features to zero. In essence,
this provides a location bias to the object queries. Alter-
natively, we additionally use the backbone features of the
sampled points as query features. The three different set-
tings are depicted in Figure 2. Moreover, we use random
Fourier [31] instead of the typical sinusoidal positional em-
beddings [, 3] for points fed into the transformer decoder.

Transformer
Decoder

Transformer
Decoder

00000

Learned Queries

+ Features

Sampled Querie:

1) Parametric 2) Non-Parametric 3)+Features

Figure 2. Parametric vs Nonparametric Queries. While M2F
uses learned parametric object queries, we use furthest point sam-
pling to sample query positions which are fed to the transformer
decoder. As a third setting, we additionally feed the point features
from the sampled points as object feature queries into the decoder.

Aggregate Segment
Segments Mask

=

Feature

11—

00000

Figure 3. Feature Aggregation Across Segments. Instead of
computing mask logits and mask losses for every voxel, we av-
erage features per segment which saves significant memory.

Backbone

(® Mask Prediction. In contrast to Mask2Former, we do
not predict masks over pixels or 3D points but over spa-
tially contiguous sets of 3D points, i.e. segments, which we
obtain by using the graph-based Felzenszwalb and Hutten-
locher algorithm [7] (c.f. Fig. 3). We average features of
points falling into the same segment and calculate the loss
on segments instead of individual points. As we have 2 or-
ders of magnitude fewer segments than points, this results

in an overall reduced memory consumption. Mask2Former
leverages PointRend [14] to reduce the memory complex-
ity. Since this relies on interpolation between points and
we extract features using a sparse backbone, segment level
aggregation was easier to realize, while at the same time
incorporating a meaningful geometric prior.

3. Experiments

Dataset. We use the ScanNet v2 benchmark dataset con-
taining a total of 1613 richly-annotated 3D indoor scenes,
which we split according to the default train/validation/test
split. The scenes are annotated with 20 semantic classes
out of which 18 are used for the 3D instance segmentation
evaluation. We use the default average precision evaluation
metrics mAP, mAP55, and mAPs5g.

3.1. Training Details

We use the same mask and classification losses and loss
weights as Mask2Former. In particular, we use the class and
full resolution mask predictions after each transformer de-
coder layer to calculate auxiliary losses. As our backbone
network, we deploy a Minkowski Res16UNet34C [4]. We
train for a total of 600 epochs using AdamW [22] and a one-
cycle learning rate schedule [30] with a maximal learning
rate of 10™%. In early experiments, we validated that longer
training (1000 epochs) does not improve results. Train-
ing takes roughly 30 hours on an NVIDIA A40 GPU. We
perform standard data augmentation: horizontal flipping,
random rotations around the z-axis, elastic distortion [29]
and random scaling. Color augmentations include jittering,
brightness and contrast augmentations. As post-processing,
we smoothen final predictions by finding dominant labels
within segments (obtained from a graph-based segmenta-
tion [7], similar to OccuSeg [8] or Mix3D [25]).

3.2. Comparison with state-of-the-art methods

Table 1 shows a comparison to the state-of-the-art 3D
instance segmentation approaches on the ScanNet valida-
tion and test set, showing that we improve over the previ-
ous best method by 0.4 mAP5y. At the same time, we can
match the speed of the previously fastest method, indicat-
ing that M2F3D could be interesting for real-world applica-
tions. Some qualitative results from our model can be seen
in the supplementary material.

3.3. Additional Experiments

Apart from the main method comparison, we highlight
some of the aspects of our approach in more detail. Sev-
eral of these, we did not yet include in our final benchmark
model, but only experimented with later on.

Parametric vs. Non-parametric queries. Table 2 shows
the effects of using parametric or non-parametric queries.

Runtime Validation Test

Method (inms) mAPsomAP25 mAP mAP50mAP25
SGPN [33] 158439 - - 49 143 39.0
GSPN [35] 12702 378 534 - 30.6 -
3D-SIS [12] - 187 357 16.1 382 558
MASC [18] - - - 254 447 61.5
PanFusion [24] - - - 214 478 693
3D-Bonet [34] 9202 - - 253 48.8 68.7
MTML [15] - 402 554 282 549 731
3D-MPA [6] - 59.1 724 355 61.1 737
Dyco3D [11] - 576 729 395 64.1 76.1
PE [26] 57.1 738 39.6 645 776

PointGroup [13] 452 56.7 713 407 63.6 778
GICN [19] 8615 - - 341 638 788
OccuSeg [3] 1904 60.7 719 48.6 672 742

SSTNet [17] 428 643 740 506 69.8 789
HAIS [2] 339 644 756 457 699 803

SoftGroup [32] 345 67.6 789 504 76.1 86.5
M2F3D (Ours) 339 722 814 561 76.5 853

Table 1. Instance Segmentation results on ScanNet (15/04/22).
We report state-of-the-art performance on the ScanNet validation
and test set while being computationally efficient. Inference speed
is averaged over the validation set and computed on a TITAN X
GPU (c.f. [32]), excluding the calculation of segments.

Query Positions Query Features mAP mAP;omAP25

parametric 45.1 63.3 76.6
46.8 65.1 76.8
455 65.6 78.3

(O parametric
(@ sampled point Zeros
(® sampled point point features

Table 2. Query Types. We explore two variants for query posi-
tions and features. Parametric queries (I) are learned during train-
ing. Nonparametric queries consist of sampled point positions (2)
and potentially their features (3), resemble scene-specific queries.

For () parametric queries, we follow Mask2Former [3].
For (2)/(3) non-parametric queries, we follow 3DETR [23].
(@ only uses the positions of sampled points but uses query
features that are set to zero-initialized. We also experiment
with additionally using the point features from the sampled
points as query features (3). Both non-parametric variants
work slightly better than the parametric variant and have the
added benefit of sampling different amounts of points dur-
ing inference. The difference is significantly smaller than
for 3DETR [23], potentially based on the direct assignment
of points to queries based on the mask supervision.

Masks on segments. Table 3 evaluates two aspects of how
segments are used in our approach. First, we aggregate
features within segments during the mask computation in
our model and only compute mask logits (and losses) on
a segment level. This reduces the required memory and
enables us to train models with a more fine-grained voxel

Voxel Segment Post Train
Size Aggreg. Proc. Memory mAP mAP5;y) mAPss

Scm 29.1GB 410 645 79.1
Scm v 291GB 477 672 792

26.5GB 413 629 77.1
26.5GB 46.8 651 76.8

Scm avg
Scm avg v

2cm - - - _

445GB 515 715 820
445GB 532 724 82.0

2cm avg
2cm avg v

Table 3. Masks on Segments. Segment level post-processing im-
proves results by up to 6.7 mAP. Segment aggregation during mask
computation reduces performance slightly, but it enables training
on smaller voxels.

Positional Embedding o mAP mAP;g mAPo;
Sine/Cosine - 47.3 67.0 79.1
Random Fourier 1.0 46.8 65.1 76.8

Random Fourier 10.0 48.0 67.6 79.3

Table 4. Positional Embeddings. Random Fourier positional em-
beddings can be superior to sinusoidal positional embeddings de-
pending on the scale o used to sample projection parameters.

Object Queries mAP mAP5; mAPo5
100 46.8 65.1 76.8
200 48.2 66.5 79.1

Table 5. Number of Queries. Training the network with more
object queries results in a better performance.

size. However, at a slightly decreased performance of the
model. Additionally, we can also apply a segment level
post-processing at the point cloud level on our final predic-
tions. This gives a quite significant boost, albeit it is less
pronounced for the model trained on 2cm voxels.

Positional embeddings. Inspired by 3DETR, we switched
to random Fourier embeddings [31], which work slightly
better. Table 4 shows that for non-parametric queries they
result in slightly worse performance when the scale of the
Gaussian, from which the projection parameters are sam-
pled, is not selected optimally. With a proper scale, small
improvements can be made, however, at the cost of addi-
tional randomness.

Number of object queries. While for most image-based
tasks, M2F reports that 100 object queries yields best per-
formance, we here find that increasing the number to 200
gives a significant performance boost as can be seen in Ta-
ble 5. However, this does come at an increased computa-
tional cost, which would require additional modifications to
make the training of the 2 cm voxel model feasible. As such
we use 100 object queries in our benchmark model.

threshold

threshold
=== — mAP % 50 — mAP
mAP@50 €

y
f
/
/ —= MAP@50

—— mMAP@25 40 / / —— mMAP@25

query type 30 i experiment

—— non-parametric / —— 100 trained queries

-~ parametric 204 / --- 200 trained queries

0 2 4 6 8 10 12 50 100 150 200 250 300 350
decoder steps #queries during evaluation

(a) Decoder steps (b) Number of sampled queries

Figure 4. Varying of Decoder Steps/Queries. During inference
we can evaluate a subset of the decoder steps or sample a different
number of non-parametric queries.

Varying decoder parameters during inference. The
transformer decoder goes through the coarse-to-fine hier-
archy three times and a segmentation output can be cre-
ated after every decoder layer. Figure 4a shows the per-
formance of the different outputs for both parametric and
non-parametric queries. In both cases the performance sat-
urates rather quickly, but the parametric queries start off at
a significantly higher performance level. When using non-
parametric queries, we are not bound to sampling the same
fixed amount of queries as used during training. Figure 4b
shows that sampling more queries can have a small pos-
itive effect, fewer queries however decrease performance,
albeit the drop is fairly small at first. It is interesting to see
that the decrease is larger for the model trained with 200
queries. Overall it performs slightly better when sampling
more queries, even though both models have the exact same
amount of trainable parameters. Varying either of these two
settings can be seen as a speed/accuracy trade-off.

4. Conclusion and Outlook

We have shown that the Mask2Former architecture is a
generic approach that can, with a few modifications, be ap-
plied to the task of 3D instance segmentation, setting a new
state-of-the-art performance on the competitive ScanNet v2
benchmark. It is one of the first transformer-based models
that effectively works on 3D data and it has the potential to
bridge the gap between 2D and 3D specific architectures.
Our experiments explore parts of the design space of the
M2F3D architecture and show that there is ample room for
further improvement.

We plan to evaluate this model on further datasets (e.g.
S3DIS), on different domains (outdoor autonomous driving
scenarios), and perform more thorough experiments with
other tasks such as semantic segmentation or object detec-
tion on 3D data. While some challenges will likely be en-
countered, we expect M2F3D to generalize well and hope
that interesting synergies between the 2D and 3D domains
can be created based on this shared architecture.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
End Object Detection with Transformers. In ECCV, 2020. 2
Shaoyu Chen, Jiemin Fang, Qian Zhang, Wenyu Liu, and
Xinggang Wang. Hierarchical Aggregation for 3D Instance
Segmentation. In ICCV, 2021. 1,3

Bowen Cheng, Ishan Misra, Alexander G Schwing,
Alexander Kirillov, and Rohit Girdhar. Masked-attention
Mask Transformer for Universal Image Segmentation.
arXiv:2112.01527,2021. 1, 2,3, 6

Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4D
Spatio-Temporal ConvNets: Minkowski Convolutional Neu-
ral Networks. In CVPR, 2019. 1, 3,6

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In ICLR, 2021. 1

Francis Engelmann, Martin Bokeloh, Alireza Fathi, Bastian
Leibe, and Matthias NieSner. 3D-MPA: Multi-Proposal Ag-
gregation for 3D Semantic Instance Segmentation. In CVPR,
2020. 1,3

Pedro F Felzenszwalb and Daniel P Huttenlocher. Efficient
Graph-Based Image Segmentation. 1JCV, 59(2):167-181,
2004. 2,3

Lei Han, Tian Zheng, Lan Xu, and Lu Fang. OccuSeg:
Occupancy-aware 3D Instance Segmentation. In CVPR,
2020. 3

Kaiming He, Georgia Gkioxari, Piotr Dollér, and Ross Gir-
shick. Mask R-CNN. In ICCV, 2017. 1

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep Residual Learning for Image Recognition. In CVPR,
2016. 1

Tong He, Chunhua Shen, and Anton van den Hengel.
DyCo3D: Robust Instance Segmentation of 3D Point Clouds
through Dynamic Convolution. In CVPR, 2021. 3

Ji Hou, Angela Dai, and Matthias Niefiner. 3D-SIS: 3D Se-
mantic Instance Segmentation of RGB-D Scans. In CVPR,
2019. 3

Li Jiang, Hengshuang Zhao, Shaoshuai Shi, Shu Liu, Chi-
Wing Fu, and Jiaya Jia. PointGroup: Dual-Set Point Group-
ing for 3D Instance Segmentation. In CVPR, 2020. 1, 3
Alexander Kirillov, Yuxin Wu, Kaiming He, and Ross Gir-
shick. PointRend: Image Segmentation as Rendering. In
CVPR, 2020. 3

Jean Lahoud, Bernard Ghanem, Marc Pollefeys, and Mar-
tin R Oswald. 3D Instance Segmentation via Multi-Task
Metric Learning. In ICCV, 2019. 3

Xin Lai, Jianhui Liu, Li Jiang, Liwei Wang, Hengshuang
Zhao, Shu Liu, Xiaojuan Qi, and Jiaya Jia. Stratified Trans-
former for 3D Point Cloud Segmentation. In CVPR, 2022.
1

Zhihao Liang, Zhihao Li, Songcen Xu, Mingkui Tan, and
Kui Jia. Instance Segmentation in 3D Scenes using Semantic
Superpoint Tree Networks. In /CCV, 2021. 3

Chen Liu and Yasutaka Furukawa. MASC: Multi-scale
Affinity with Sparse Convolution for 3D Instance Segmen-
tation. arXiv:1902.04478,2019. 3

(19]

(20]

(21]

(22]

(23]

[24]

[25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

Shih-Hung Liu, Shang-Yi Yu, Shao-Chi Wu, Hwann-Tzong
Chen, and Tyng-Luh Liu. Learning Gaussian Instance Seg-
mentation in Point Clouds. arXiv:2007.09860, 2020. 3

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin Transformer:
Hierarchical Vision Transformer using Shifted Windows. In
ICCV, 2021. 1

Ze Liu, Zheng Zhang, Yue Cao, Han Hu, and Xin
Tong. Group-Free 3D Object Detection via Transformers.
arXiv:2104.00678, 2021. 1

Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay
Regularization. In ICLR, 2019. 3

Ishan Misra, Rohit Girdhar, and Armand Joulin. An End-to-
End Transformer Model for 3D Object Detection. In ICCV,
2021. 1,2,3,6

Gaku Narita, Takashi Seno, Tomoya Ishikawa, and Yohsuke
Kaji. Panopticfusion: Online volumetric semantic mapping
at the level of stuff and things. In /ROS, 2019. 3

Alexey Nekrasov, Jonas Schult, Or Litany, Bastian Leibe,
and Francis Engelmann. Mix3D: Out-of-Context Data Aug-
mentation for 3D Scenes. In 3DV, 2021. 3

Xuran Pan, Zhuofan Xia, Shiji Song, Li Erran Li, and Gao
Huang. 3D Object Detection With Pointformer. In CVPR,
2021. 1

Charles R Qi, Or Litany, Kaiming He, and Leonidas J
Guibas. Deep Hough Voting for 3D Object Detection in
Point Clouds. In ICCV, 2019. 1

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster R-CNN: Towards Real-Time Object Detection with
Region Proposal Networks. In NeurIPS, 2015. 1

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
In MICCAI 2015. 1,3

Leslie N Smith and Nicholay Topin. Super-Convergence:
Very Fast Training of Neural Networks Using Large Learn-
ing Rates. In Artificial intelligence and machine learning for
multi-domain operations applications, 2019. 3

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara
Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-
mamoorthi, Jonathan Barron, and Ren Ng. Fourier Features
Let Networks Learn High Frequency Functions in Low Di-
mensional Domains. In NeurIPS, 2020. 2, 4, 6

Thang Vu, Kookhoi Kim, Tung M Luu, Xuan Thanh
Nguyen, and Chang D Yoo. SoftGroup for 3D Instance Seg-
mentation on Point Clouds. In CVPR, 2022. 1, 3,6

Weiyue Wang, Ronald Yu, Qiangui Huang, and Ulrich Neu-
mann. SGPN: Similarity Group Proposal Network for 3D
Point Cloud Instance Segmentation. In CVPR, 2018. 3

Bo Yang, Jianan Wang, Ronald Clark, Qingyong Hu, Sen
Wang, Andrew Markham, and Niki Trigoni. Learning Ob-
ject Bounding Boxes for 3D Instance Segmentation on Point
Clouds. In NeurIPS, 2019. 3

Li Yi, Wang Zhao, He Wang, Minhyuk Sung, and Leonidas J
Guibas. GSPN: Generative Shape Proposal Network for 3D
Instance Segmentation in Point Cloud. In CVPR, 2019. 3
Biao Zhang and Peter Wonka. Point Cloud Instance Seg-
mentation using Probabilistic Embeddings. In CVPR, 2021.
3

(b) Center Votes

(a) Input Point Cloud

SoftGroup

M2F3D

(b) Center Votes

(a) Input Point Cloud

SoftGroup

b 3

M2F3D

(d) Exemplary Heatmap

|

(c) Instance Prediction

(c) Instance Prediction

-

Figure 5. Qualitative Comparison to SoftGroup [32]. We compare M2F3D with the current top-performing voting-based approach
SoftGroup. The top example shows a scene containing a single large U-shaped table, see (e) in pink. SoftGroup is based on center-voting
and tries to predict the instance center, shown in (b) in red. However, predicting centers of such very large non-convex shapes can be
difficult for voting-based approaches. Indeed, SoftGroup fails to correctly segment the table and returns two partial instances (c). Our
M2F3D, on the other side, does not rely on hand-selected geometric properties such as centers and can handle arbitrarily shaped and sized
objects. It correctly predicts the tables instance mask (e). In the bottom example, we see that SoftGroup has difficulties to predict precise
centers for multiple chairs located next to each other (b). As a result, the manually tuned grouping mechanism aggregates them all into one
big instance which is later discarded by the refinement step. It therefore misses to segment all eight chairs (c). M2F3D does not rely on
hand-crafted grouping mechanisms and can successfully segment most of the chairs.

Comparison to SoftGroup In Fig. 5, we qualitatively
compare M2F3D with SoftGroup [32], the best performing
voting-based 3D instance segmentation approach.

Model Details. We deploy a Minkowski Res16UNet34C
[4] and obtain feature maps from all of its 5 scales. The
feature maps have (96, 96, 128, 256, 256) channels (sorted
from fine to coarse). As the Transformer decoder expects a
feature dimension of 128, we apply a non-shared linear pro-
jection after each F'; to map the features to the expected di-
mension. Furthermore, we employ a modified Transformer

decoder by Mask2Former [3] (swapped cross- and self-
attention) leveraging an 8-headed attention and a feedfor-
ward network with 1024-dimensional features. For each in-
termediate feature map, we instantiate a dedicated decoder
layer. We attend to the backbone features 3 times with
Transformer decoders with shared weights. We use 100
object queries. Following Misra et al. [23], we calculate
the query positions from random Fourier embeddings [31]
based on relative voxel positions scaled to [—1, 1].

	. Introduction
	. Method
	. Experiments
	. Training Details
	. Comparison with state-of-the-art methods
	. Additional Experiments

	. Conclusion and Outlook

